Charles Edison Lecture Series


History of Mathematics Seminar

Monday, January 25, 2021
11 a.m.

David Blackwell was a towering figure in the mathematics and statistics field. His rise, in spite of all the doors that were closed to him, speaks to his character, intelligence, and love of learning. In this talk, we will contextualize some of David Blackwell’s experiences and share some of his work. Centered throughout the talk is the notion of power. In which places do we have power over others? What do we do with this power? Who do we listen to? Who is missing in these places? Alexander Diaz-Lopez, assistant professor at Villanova University, will share insights into David Blackwell.


The College of Science's Edison Lectures, the Eck Institute for Global Health, and the Office of the Provost have launched a weekly webinar series titled, Consider This! Simplifying the COVID-19 Conversation. The series features live discussions unpacking the science and research behind the coronavirus pandemic by exploring in-depth related issues in an accessible manner for the general public.

The webinar series is co-hosted by Heidi Beidinger-Burnett, associate professor of the practice and director of the Master of Science in Global Health program, and Mary Ann McDowell, associate professor of biological sciences.

Consider This! Wastewater Testing

Monday, December 14, 2020
6 p.m.

Kyle Bibby, associate professor and Wanzek Collegiate Chair in the Department of Civil & Environmental Engineering & Earth Sciences

Consider This! Public Health in the Face of the Pandemic

Monday, December 7, 2020
6 p.m.

Dr. Robert Einterz, St. Joseph County Department of Health officer

Consider This! Cultivate Food Rescue and Food Security

Monday, November 30, 2020
6 p.m.

Jim Conklin, president and co-founder of Cultivate Food Rescue

Marijo Martinec, CEO of Food Bank of Northern Indiana

Consider This! COVID-19 Testing

Monday, November 23, 2020
6 p.m.

Liz Rulli, associate vice president for research

Paul Hergenrother, Kenneth L. Rinehart Jr. Endowed Chair in Natural Products Chemistry and Professor of Chemistry at the University of Illinois Urbana Champaign

Consider This! Special Populations

Monday, November 16, 2020
6 p.m.

Debra Stanley, founder and executive director of Imani Unidad Inc.

William Redman, sheriff of St. Joseph County

Consider This! Public Trust in Public Health and Vaccines

Monday, November 9, 2020
6 p.m.

Consider This! Epidemiology of COVID-19

Monday, November 2, 2020
6 p.m.

Alex Perkins, associate professor in the Department of Biological Sciences

Jenna Coalson, assistant professor of the practice in the Department of Biological Sciences

Consider This! COVID-19 Pandemic and Athletics

Monday, October 26, 2020
6 p.m.

Jack Swarbrick, Vice President and James E. Rohr Director of Athletics

Patricia Bellia, William J. and Dorothy K. O’Neill Professor of Law and chair of the Faculty Board on Athletics

Consider This! Masks, Distancing, and the Public

Monday, October 19, 2020
6 p.m.

Dr. Mark Fox, St. Joseph County Department of Health deputy health officer

David Leighton, professor in the Department of Chemical and Biomolecular Engineering

Mark McCready, professor in the Department of Chemical and Biomolecular Engineering and senior associate dean for research and graduate studies in the College of Engineering

Consider This! Vaccines and Immunology of COVID-19

Monday, October 12, 2020
6 p.m.

Brian Baker, Rev. John A. Zahm Professor and Department Chair in the Department of Chemistry Biochemistry

Jeffery Schorey, George B. Craig Jr. Professor in the Department of Biological Sciences

Consider This! In a Pandemic, Science Matters 

Monday, October 5, 2020
6 p.m.

Marie Lynn Miranda, Charles and Jill Fischer Provost of the University of Notre Dame and professor in the Department of Applied and Computational Mathematics and Statistics

How do I average networks?

Monday, February 17, 2020
4:15 p.m.
101 Jordan Hall of Science

The rapid pace at which data and computing have come to influence nearly every aspect of our lives is in turn the driver for tremendous innovation in statistics. In this talk, Eric Kolaczyk, Ph.D., Data Science Faculty Fellow at Boston University and director of the Hariri Institute for Computing, will describe how the generic notion of an average and the standard tools associated with it in "Statistics 101" are being extended to contects where each data point is an entire network. Applications range from bioinformatics and computational biology to the privacy of social networks.


Organo-metallic hybrid halide perovskite: Beyond Photovoltaics

Wednesday, October 30, 2019
4 p.m.
118 Nieuwland Science Hall

László Forró, Ph.D., EPFL (The Swiss Federal Institute of Technology of Lausanne), Lausanne, Switzerland

Forró’s laboratory has devoted considerable efforts to the growth of high-quality single crystals at different length scales. The structural tunability of methylammonium lead iodide perovskite allows the study of a broad range of physical phenomena including electrical and thermal transport, magnetism, optical properties, and band structure by photoemission. In this presentation, a selected set of measurements will be reported together with some device applications beyond solar cells.

Faraday's Challenge

Wednesday, September 11, 2019
4 p.m.
118 Nieuwland Science Hall

Peter B. Littlewood, Ph.D., Professor of Physics at the University of Chicago; former director of Argonne National Laboratory, and founding executive director of the Faraday Institute

In 1815 Michael Faraday was gifted a voltaic pile – the first battery. He embarked on a series of experiments that led to the electrical dynamo and the electrical motor. But fossil fuels were cheaper, leading to the dominance of the combustible engine. This stalled the advancement in electrochemical technology. In this talk, Littlewood will discuss how to accelerate the transition to an electrically powered sustainable economy.

Building the Foundations of a Curious Student

Friday, June 28, 2019
2 - 3 p.m.
322 Jordan Hall Science

John Pijanowski, Ph.D., from the University of Arkansas, studies the ways in which we teach and prepare people to be more likely to move from making a decision about what they should do, to actually doing it. How can we as faculty faculty turn time spent responding to questions like, “Will this be on the test?” into time spent diving deeply into critical issues that capture their and our imaginations? In this conversation we explore what obstacles students might have in engaging their own curiosity, and our role in helping students remove them.

12th Annual Collaboration for STEM Education, Research, and Commercialization Forum

Saturday, February 23, 2019
8:30 a.m. - 2:30 p.m.
Jordan Hall of Science

New Indiana career-readiness high school graduation requirements reflect how our increasingly connected world is transforming education. Hear from leaders working in education, industry and government, and learn how to make the transition from largely isolated educational institutions to cross-sector collaboration in order to better prepare students for life-long learning.


Disease and the Problem of Evil

Thursday, November 15
7:15 p.m.
Jordan Hall of Science Auditorium
(Gold Mass at the Basilica of the Sacred Heart at 5:15 p.m., and reception in the Jordan Hall galleria at 6:15 p.m. precede the talk)

Stephen Meredith, M.D., PhD., is a professor in the University of Chicago's departments of pathology, biochemistry and molecular biology, and neurology. A founding member of the board of the Society of Catholic Scientists, he is also an associate faculty member in the University of Chicago divinity school.

Quantile Regression and Data Augmentation

September 24
4:30 p.m.
105 Jordan Hall of Science
(reception to precede event at 3 p.m.)

Quantile regression is a powerful statistical tool, used frequently in studies involving public health. Xuming He, chair and H.C. Carter Professor of Statistics at the University of Michigan, will share a new approach toward censored quantile regression estimation that can handle different forms of censoring, with highly efficient results.

Precision Medicine and Data Science

Thursday, May 3
4 p.m. 
107 Carey Auditorium, Hesburgh Library
(reception precedes the talk from 3:00-3:45 in the Hurley Hall globe area)

Eric Laber, associate professor of statistics, North Carolina State University, studies nonregular asymptotics, dynamic treatment regimes, and machine learning. Precision medicine holds tremendous potential to improve patient outcomes while reducing resources and treatment burden. Laber will review some of the basic methodologies used in data-driven precision medicine, the limitations of the framework in which these methods were developed, and discuss the need for an expanded framework that may narrow the existing research-practice gap.

5th Lake Michigan Workshop on Combinatorics and Graph Theory

Saturday, April 21 and Sunday, April 22
Hayes-Healy Center

The 5th Lake Michigan Workshop on Combinatorics and Graph Theory will include two sets of tutorial lectures. Speaker Bridget Tenner, of the Department of Mathematical Statistics at DePaul University, will speak about Coxeter systems, permutation patterns and reduced words. Ryan Martin, of the Department of Mathematics at Iowa State University, will speak about edit distance on graphs.

There will also be some short talks by participants and a problem session.

Please register here. Please visit the workshop website for further information and updates.

The workshop is sponsored by the National Science Foundation and the Institute for Mathematics and its Applications. It is also supported by the Department of Mathematics, the College of Science, and Notre Dame Research.

Climate Model Emulation and Future Climate Simulation

Friday, April 6
4 p.m.
107 Carey Auditorium

Michael Stein, Department of Statistics, University of Chicago, discusses two statistical approaches to producing possible simulations of future climates.

Computation in Network Data Analysis

Monday, March 19
4:15 p.m.
117 Hayes-Healy Center

Statistical inference and computation of network structures present great challenges. Yuguo Chen, professor in the Department of Statistics at the University of Illinois at Urbana-Champaign, will explore a sample of computational problems in network data analysis, including Monte Carlo algorithms and a range of examples that illustrate the proposed methods.

Collaborating for STEM Education, Research and Commercialization Forum

Saturday, Feb. 24
8:30 a.m. - 2:30 p.m.
Jordan Hall of Science

The 11th annual Collaborating for Education and Research Forum, an annual gathering of professionals engaged in STEM education, research, and commercialization in Michiana, will take place from 8:30 a.m. - 2:30 p.m. Saturday, Feb. 24, in the Jordan Hall of Science.

This year's forum will focus on establishing a network of relationships among regional STEM professionals including K-12 teachers, university faculty and staff, undergraduate and graduate students, manufacturers, and those at supporting organizations.

The morning will feature a collaboration and technology showcase. In the afternoon, Kathie L. Olson, Ph.D., founder and managing director of ScienceWorks International and former deputy director of the National Science Foundation (NSF), as well as former chief scientist with NASA, will speak.

Breakfast and lunch will be provided, as well as certificates for five professional growth points for K-12 teachers and educators.

A Practical Guide to Teaching and Learning STEM

Friday, Jan. 12
9 a.m. - 5 p.m.
105 Jordan Hall of Science

This college-wide teaching conference will be led by Richard Felder and Rebecca Brent, nationally recognized leaders in university STEM education and authors of Teaching and Learning STEM: A Practical Guide. In May 2016, Felder and Brent led a well-received conference organized by the College of Engineering, where they provided practical and proven strategies for improving both faculty effectiveness and student learning in STEM courses. The conference is also sponsored by the College of Science, the Kaneb Center for Teaching and Learning, and the Graduate School.


Inaugural Gold Mass Lecture

Jonathan Lunine
David C. Duncan Professor in the Physical Sciences, Cornell University

Wednesday, Nov. 15
7:15 p.m.- 8:15 p.m.
101 Jordan Hall of Science

Join us after the Gold Mass Wednesday, Nov. 15 in 101 Jordan Hall of Science for a Charles Edison Lecture Series talk, "Lemaitre, Modern Cosmology and the Question of the Compatibility of Science and Faith." Jonathan I. Lunine, the David C. Duncan Professor in the Physical Sciences at Cornell University, and founding member and current vice president of the Society of Catholic Scientists, will describe the life of Rev. George Lemaître, father of the Big Bang model of the cosmos, as well as other well-known Catholic scientists. Lunine will address the question of whether “the believing scientist” is a dying breed.

5th Semi-Annual Midwest Quantitative Biology Symposium (MidQBio)

Saturday, April 8, 2017

Jordan Hall of Science, Room 105
University of Notre Dame
Notre Dame, IN 46556

The aim of the MidQBio Symposium is to bring together researchers from around the Midwest who share a common interest in quantitative biology, and to help build a community of these researchers. The symposium provides researchers opportunities to: come together to share and disseminate recent results, become familiar with other research groups in the area of quantitative biology, and facilitate potential collaboration. Especially important is the cultivation of early career researchers including graduate students and postdocs whose work is highlighted in lightning presentation sessions.


We are very grateful to the Notre Dame College of Science, the Departments of Applied and Computational Mathematics & Statistics (ACMS), Physics, Chemical and Biomolecular Engineering, Biological Sciences, and Aerospace & Mechanical Engineering for their generous support of this event!


Alexandra Jilkine, ACMS (ajilkine at
Alex Perkins, Biological Sciences (taperkins at
Dervis Can Vural, Physics (dvural at
Jeremiah Zartman, Chemical and Biomolecular Engineering (jzartman at
Pinar Zorlutuna, Aerospace & Mechanical Engineering (pzorlutu at


Bruce Chase

Research Professor in Materials Sciences & Engineering
University of Delaware

"Nanoscale Characterization of Poly(3-hydroxybutyrate) Fibers"

127 Nieuwland Science Hall – 4 pm
October 29, 2015

Chase's research interests are in the area of structure/property/process relationships in polymeric materials, electrospinning polymer nanofibers, high strength polymeric fibers, IR/Raman spectroscopy, and vibrational sum frequency generation spectroscopy of polymeric films and fibers. In collaboration with Professor John Rabolt, he has developed planar array infrared spectroscopy, a new approach to IR measurements. In collaboration with Professor Matt Doty, he is expanding the use of ultra-fast laser techniques for both time resolved spectroscopy (transient absorption and photoluminescence) and tunable infrared laser measurements. Chase spent 34 years in the Central Research Department at DuPont.

Thomas Meyer

Arey Professor of Chemistry
Director of the Energy Frontier Research Center on Solar Fuels
University of North Carolina at Chapel Hill

"Making Oxygen from Sunlight and Water" (680k)

Carey Auditorium, Hesburgh Library  4:00 p.m.
April 16, 2015

The sun could be our ultimate renewable energy source but, as an energy source, suffers from its low intensity, and the massive collection areas required to meet the needs of powering the world’s growing economies. The sun is also intermittent, going down at night, which creates a need for energy storage on massive scales.  Inspired by natural photosynthesis, a way to meet the energy storage challenge is by using the energy of the sun to produce “solar fuels” by “Artificial Photosynthesis” with energy stored in the chemical bonds of high energy molecules - hydrogen from water splitting or carbon-based fuels from reduction of CO2.

In this presentation, a hybrid approach to solar fuels is described. It is based on the integration of molecular assemblies for light absorption and catalysis with the band gap and surface properties of mesoscopic, nanoparticle films of inert metal oxides – TiO2, SnO2, NiO. In the resulting Dye Sensitized Photoelectrosynthesis Cells (DSPEC), light absorption by the chromophore and excited state injection into the conduction band of TiO2 initiates a series of electron transfer events. Transfer of the injected electron transfer to a cathode results in H2 evolution. With appropriate design features built in, including surface stabilization of the assembly and use of core/shell structured oxide films, relatively high per photon-absorbed efficiencies for visible light water splitting into hydrogen and oxygen has been achieved.


Peter Wolynes

D.R. Bullard-Welch Foundation Professor of Science, Department of Chemistry, Rice University

"The Protein Folding Problem"

127 Hayes-Healy Center  4:15 p.m.
October 9, 2014

Protein folding can be understood as a biased search on a funneled but rugged energy landscape. The funneled nature of the protein energy landscape is a consequence of natural selection. Prof. Peter Wolynes of Rice University will discuss how this rather simple picture quantitatively predicts folding mechanism from native structure and sequence. He will also discuss recent advances using energy landscape ideas to create algorithms capable of predicting protein tertiary structure from sequence, protein binding sites and the nature of structurally specific protein misfolding relevant to disease. Finally, he will compare the physical folding energy landscape with the apparent fitness landscape of evolution as inferred from large genomic data sets.


Philip K. Maini

Director of the Centre for Mathematical Biology, Mathematical Institute at Oxford University

"Modeling Invasive Processes in Biology" (1.12MB PDF)

Raclin-Charmichael Hall Auditorium — 4:00 p.m.
February 18, 2013

The collective movement of cells in tissue is vital for normal development but also occurs in abnormal development, such as in cancer. We will review three models:

(i) A vertex-based model to describe cell motion in the early mouse embryo
(ii) A individual-based model forneural crest cell invasion
(iii) A model for acid-mediated tumor invasion

In each case we shall use the model to answer important issues concerning biology.

For example, in (i) we shall propose a role for rosette formation. In (ii) we propose that two cell types are necessary for successful invasion. Lastly, in (iii) we shall show how the model suggests possible therapeutic strategies for tumor control.


Christy Haynes

University of Minnesota

"Electroanalytical Eavesdropping on Cellular Communication" (79kb PDF)

123 Nieuwland Science Hall - 4:30 p.m.
March 3, 2011

Single cell measurements reveal otherwise unobtainable information about how individual biological cells communicate with one another. This talk will focus on the use of single cell microelectrochemical measurements to study (1) blood platelets and (2) immune cell nanoparticle toxicity. Blood platelets are critical players in the process of hemostasis but, based on their small size and propensity to activate, real time single cell measurement of chemical messenger secretion has never been accomplished. Herein, microelectrochemical techniques reveal the concentration of chemical messengers stored in and the kinetics of chemical messenger release from individual platelets, including considerations of how extracellular and membrane manipulations influence platelet behavior. The same electrochemical techniques that reveal fundamental insight about blood platelets can also be used for applied studies of nanoparticle toxicity. In this case, carbon-fiber microelectrochemistry is used to probe critical cell function in immune system cells following exposure to engineered nanoparticles. The insight gained reveals how nanoparticles interact with cells as well as potential avenues to avoid this interaction in next generation nanoparticle-containing products.


Mathematics Panelists

Hosted by the University of Notre Dame

"Interactions between Geometry and Analysis" (1.05MB PDF)

October 21-21, 2010 - 2:00 p.m.

  • Dimitri Burago (Penn State University)
  • Robert Bryant (MSRI, Berkeley)
  • Jeff Cheeger (Courant Institute, NYU)
  • Toby Colding (MIT)
  • Vitali Kapovitch (University of Toronto)
  • Bruce Kleiner (Courant Institute, NYU and Yale)
  • Peter Petersen (UCLA)
  • Anton Petrunin (Penn State University)
  • Christina Sormani (CUNY)
  • Chuu-Lian Terng (UC-Irvine)
  • Gang Tian (Princeton)
  • Guofang Wei (UCSB)
  • Wolfgang Ziller (University of Pennsylvania)

Charles Bennett

"Quantum information, the ambiguity of the past, and the complexity of the present" (122kb PDF)

127 Hayes-Healy Center - 4:30 p.m.
May 25, 2010

Quantum theory, in particular the theory of entanglement, provides a coherent picture of the physical origin of randomness and the growth and decay of correlations, even in macroscopic systems exhibiting few traditional quantum hallmarks. It helps explain why the future is more uncertain than the past, and how correlations can become macroscopic and classical by being redundantly replicated throughout a system's environment. The most private information, exemplified by which path a particle takes through an interferometer, is not replicated, and exists only transiently: after the experiment is over no record remains anywhere in the universe of what ``happened''. At the other extreme is information that has been replicated and propagated so widely as to be infeasible to conceal and unlikely to be forgotten. Modern information technology has caused an explosion of such information, eroding privacy while making it harder for tyrants to rewrite the history of their misdeeds; and it is tempting to believe that all macroscopic information is permanent, making such cover-ups impossible in principle. But we argue, by comparing entropy flows into and out of the Earth with estimates of the planet's storage capacity, that most macroscopic classical information--for example the pattern of drops in last week's rainfall--is impermanent, eventually becoming nearly as ambiguous, from a terrestrial perspective, as the which-path information of an interferometer. Finally, we discuss prerequisites for a system to accumulate and maintain in its present state, as our world does, a complex and redundant record of at least some features of its past. Not all dynamics and initial conditions lead to this behavior, and in those that do, the behavior itself tends to be temporary, with the system losing its memory as it relaxes to thermal equilibrium.


Eric E. Schadt

Chief Science Officer, Pacific Biosciences

"An Integrated Biology Approach to Reverse Engineering Living Systems" (4.29MB PDF)

Jordan Hall of Science, room 101 - 4:00 p.m.
November 24, 2009

To further our understanding of the complex network of molecular and cellular changes that impact disease risk, disease progression, severity, and drug response, multiple dimensions must be considered together. Schadt presents an approach for integrating a diversity of molecular and clinical data to uncover models that predict complex system behavior. By integrating diverse types of data on a large scale he demonstrates that some forms of common human diseases are most likely the result of perturbations to specific gene networks that in turn cause changes in the states of other gene networks both within and between tissues that drive biological processes associated with disease. His work has significant implications for drug discovery.

Michael Freedman

Director of Station Q, Microsoft Research, UC Santa Barbara

"Creating the Quantum Computer" (526kb PDF)

Jordan Hall of Science, room 105 - 5:00 p.m.
November 16, 2009

The underlying logic of our computers is of the 19th century. Computers might, instead, be designed to “think” in a quantum mechanical way. The tidal wave that brought us quantum mechanics may wash over us again 100 years later. There is reason to believe that quantum computing is the ultimate mode of information processing consistent with physics. So the short answer to, “What will quantum computers do?” is, “Everything possible.” Topology is geometry after you have forgotten local details; it deals with discrete structures. In physics local detail is usually of paramount importance. However one of the key physical ideas of the last 50 years – the “renormalization group” – tells us there are low temperature systems whose most important properties are topological in nature. The discrete nature of topology will allow us to control quantum mechanical evolutions in these systems with amazing precision. This is just what quantum computation requires.

Robert P. Kirshner

Clowes Professor of Science, Harvard University

"Exploding Stars and Accelerating the Cosmos" (374kb PDF)

Hesburgh Library Auditorium, 7:00 p.m.
October 8, 2009

Recent observations of exploding stars located halfway across the Universe reveal an astonishing fact: the expansion of the Universe is speeding up! Apparently, the universe is dominated by a mysterious “dark energy” that drives cosmic acceleration. Robert P. Kirshner, a distinguished astronomer and science educator, explains this astonishing new picture of the universe in a lively, richly illustrated presentation, drawing his own first-hand account of the discovery.